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In the weak-coupling limit, we investigate two-leg ladders with a unit cell containing both Cu and O atoms
as a function of doping. For purely repulsive interactions, using bosonization, we find significant differences
with the single-orbital case: a completely massless quantum critical regime is obtained for a finite range of
carrier concentration. In a broad region of the phase diagram, the ground state consists of a pattern of orbital
currents plus a density wave. NMR properties of the Cu and O nuclei are presented for the various phases.
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I. INTRODUCTION

Over the past two decades, the description of strongly
correlated electron materials has been one of the most ac-
tively pursued problems in condensed-matter physics. When
the strength of Coulomb interactions between carriers is on
the order of �or larger than� their kinetic energy, many new
remarkable phenomena may occur. Their fingerprints are
seen in experiments done on systems such as cuprate com-
pounds with high-temperature superconductivity,1 cobaltites
with large thermopower,2 manganites with colossal
magnetoresistance,3 and heavy fermions.4 Among these ma-
terials, cuprates play a special role. At half filling they are
insulators with antiferromagnetic �AF� order, but with dop-
ing, a sequence of phases is observed including spin glass,
pseudogap, d-type superconductivity �SCd�, and eventually
Fermi-type behavior for very large carrier concentrations.

Unfortunately there is, to date, no consensus on a theoret-
ical model that would allow one to describe the physics of
the Cu-O planes. In order to get insights into this strong
correlation problem, the study of ladder structures5,6 has
proven quite useful. Ladders are the simplest systems that
interpolate between one and two dimensions.7 They consti-
tute the quasi-one-dimensional analog of the Cu-O sheets
and, because of the reduced dimensionality, even weak inter-
actions lead to dramatic effects. In the one-dimensional �1D�
case, the weak- and strong-interaction limits are usually
smoothly connected.8 Controlled nonperturbative methods—
such as bosonization or conformal field theory—and numeri-
cal techniques can be used to analyze these systems.

Compounds characterized by a ladder structure,5,6 such as
SrCuO, have been synthesized. They show a variety of un-
usual properties, such as, for example, large magnetic fluc-
tuations, SCd with purely repulsive interactions, and metal-
insulator transitions under high pressure.9–13 For these
materials, increasing the pressure amounts to changing the
bandwidth and hence the ratio of Coulomb to kinetic ener-
gies in the ladder structure.

These experimental developments provided a strong in-
centive for theorists to study two-leg ladders with Hubbard
interactions between electrons. In the weakly interacting
limit, renormalization-group �RG� analysis was used to ex-
plore their phase diagram.14–22 Tsuchiizu and co-workers23,24

performed an RG analysis in bosonization language in order

to explore the regime of dopings close to half filling. Using
current algebra, where spin-rotational symmetry was intro-
duced a priori in order to derive RG equations, Balents and
Fisher20 and Lin et al.21 established the phase diagram of
two-leg ladder versus doping, showing that there is interest-
ing physics at finite dopings. They identified a sequence of
phases, labeled CnSm with n �m� gapless charge �spin�
modes. Numerical density-matrix renormalization-group
�DMRG� calculations focused on the large U limit,25–27 the
so-called t-J approximation at half filling.28–30 The relevance
of interchain hoppings on the low-energy physics was also
addressed.31–34

The above-mentioned papers all assume that in the low-
energy limit, the Cu-O system can be reduced to an effective
single-orbital model. In the context of two-dimensional �2D�
cuprate materials, such reduction to a single-orbital model
was proposed by Zhang and Rice.35 It allowed one to derive
phase diagrams for these systems.1,36 However this simplifi-
cation was called into question, and it was pointed out that it
is necessary to retain the full three-band nature of the model
in order to capture the important physics.37,38 This issue be-
comes particularly relevant when one examines the possible
existence of orbital current phases. Such phases were ini-
tially proposed for the Hubbard model.39 They were subse-
quently analyzed by various authors,1,40–42 but in slave boson
and in numerical calculations one finds that they are un-
stable. For single-band ladder models, controlled calcula-
tions appropriate to one dimension reveal that for special
choices of interactions—which must include nonlocal
terms—staggered flux patterns are stable. This phase breaks
the translational symmetry of the lattice.43–45 According to
some authors,1,46 the 2D version of this state �the
d-density-wave �DDW� phase� describes the pseudogap
phase of the cuprates. An alternative type of orbital current
pattern, which preserves the lattice translational symmetry,
was advocated to describe the pseudogap phase.37,38 It then
requires using a three-band model. Recent experimental data
taken from neutron measurements47 and polar Kerr effect48

would be consistent with the latter proposal, but more studies
are clearly needed to fully corroborate this scenario.

Motivated by these considerations, Lee et al.49 �see also
Ref. 50� generalized the system of RG equations written in
current algebra language by Balents and Fisher20 to study the
Cu-O Hubbard ladder. Their work was, however, limited to
the half-filled case, where umklapp terms dominate the phys-
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ics, giving rise to Mott transitions. In a recent Rapid
Communication,51 we outlined the method which allowed us
to map out the full diagram of the Cu-O ladder as a function
of doping.

The aim of the present paper is to provide details of our
derivation and to present additional results which are experi-
mentally testable. In our work, oxygen atoms are taken into
account at each calculation step, which allows us to probe
their influence. First, they lead to additional types of phases
compared with the single-orbital case: A Luttinger liquid
�LL� regime is found for a finite range of dopings, and in a
broad region of the phase diagram, the ground state displays
an orbital current pattern plus density-wave quasi-long-range
order. Our study thus underscores the importance of includ-
ing these additional degrees of freedom in the structure, in
particular with regards to the existence and to the stability of
current patterns. Although our results have been derived for
the specific case of ladders, they have potential relevance to
the physics of 2D cuprate materials as well. Second, spectro-
scopic tools measuring local properties, such as NMR, are
predicted to give different signatures depending on whether
they probe Cu or O sites. In the large U limit, for 2D cu-
prates it is believed that spin fluctuations on oxygen sites
merely track those on the copper sites.36 The advantage of
revisiting the issue in a quasi-1D context is that one can
monitor spin excitations on oxygen atoms both in the small
and the large U limits using bosonization techniques. This is
done in the present paper for various dopings in the small U
limit. We do find differences between the NMR signal on the
copper and oxygen atoms at low temperature, when gaps set
in, but not at higher temperature in the LL regime.

The paper is organized as follows: In Sec. II we define the
model including the interactions relevant to the low-energy
physics. In the continuum limit the quadratic part of the
Hamiltonian is diagonal in a particular basis, Bo. We give the
relations between this basis, the bonding/antibonding basis
Bo� �relevant in the noninteracting case�, and the total/
transverse density basis B+− �the most appropriate for writing
“backward” interactions�.

In Sec. III we present an alternative method which allows
one to set up the RG equations in the case of generic
doping.51 One of its salient features is that it treats the rota-
tion of B0 with respect to B+− during the flow. This procedure
allows us to perform calculations properly for all dopings.
Indeed, symmetry requirements are fulfilled during the RG
flows and our perturbative expansions remain controlled for
a wide range of length scales. We list the resulting set of
equations; their derivation is presented in Appendix B.

The various flows and the resulting phase diagram are
given in Sec. IV. First we assess the impact of the additional
degrees of freedom. Hence we set all Coulomb interactions
pertaining to the O atoms and direct interoxygen hoppings to
zero. Some of the results obtained in previous work20 can
now be checked using our improved RG method. In contrast
with the single-orbital case, we find an intermediate doping
range where all spin and gap modes are massless �i.e., a
quantum critical line�. Next, interactions involving oxygen
atoms and hoppings between these atoms are introduced. We
find that interoxygen hoppings promote a phase of orbital
currents and we analyze its structure. Spin-rotational symme-

try was not imposed a priori, but we checked that the re-
quired property was preserved during the flow. This provides
a check on the consistency of our calculations. In the case of
massive regimes, the evolution of the gaps with doping is
shown. We briefly examine the impact of umklapp terms
which are present at half filling.

Differences between the single- and multiorbital cases are
discussed in detail in Sec. V A. The main point is that the
presence of oxygen atoms changes initial parameters in such
a way that certain symmetries �such as particle-hole symme-
try at half filling or SU�2� pseudospin� are broken. This im-
plies that rotations of the bases in the spin and in the charge
sectors are independent in contradistinction with the case of
the single-band two-leg ladder. Symmetry breaking has a di-
rect influence on interaction terms and basis rotations on the
velocities, but a combination of the two effects is responsible
for the existence of a LL regime at intermediate dopings.

In Sec. VI, we compute spin-correlation functions, which
allow us to derive the Knight shifts K and the relaxation rates
T1 for Cu and O nuclei. There are several improved features
in our work. In Ref. 23, spin-spin correlation functions were
calculated in the low-temperature limit, using Majorana
pseudofermions for the spin part. This assumes that gap
opening in the spin and in the charge modes occur at well
separated T. In bosonization language, spin-spin correlation
functions are easily obtained in all cases. For instance, if one
treats spin- and charge-density fluctuations on equal footing,
one can show that the uniform part of the susceptibility ap-
proaches a quantum critical point as doping increases and
that at low temperatures in the gapped phase, the staggered
part gives a different temperature dependence for each atom
in the elementary cell. We also discuss physical implications
of the orbital current phase.

II. MODEL

A. Hubbard Hamiltonian for Cu-O two-leg ladders

We consider a two-leg ladder with a unit cell containing
two Cu and five O atoms. Two edge oxygen sites are in-
cluded because they would provide connections with neigh-
boring ladders �which are not considered in the present
work�.

The Hamiltonian of this system is divided in two parts:
the kinetic energy of electrons moving on the lattice HT
�Fig. 1� and electron interactions Hint,

H = HT + Hint. �1�

The explicit form of the first, tight-binding part is

HT = �
j�
� �

m�Cu
�Cunmj� + �

m�O
�Onmj�

− �
m�Cu

t�amj�
† �bmj� + bmj−1,�� + H.c.�

− �
m�Cu

�t��amj�
† �bm+1,j� + bm−1,j�� + H.c.���

− �
m=�O�leg�

�tpp�bmj�
† �bm+1,j� + bm−1,j�
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+ bm+1,j−1� + bm−1,j−1�� + H.c.�� , �2�

where amj��bmj�� annihilates holes with spin � on a copper
�oxygen� site, j labels cells along the chain, and m labels the
atoms within each cell. nmj�=amj�

† amj� is the density of par-
ticles on site m, and we use here hole notation such that t, t�,
and tpp are all positive. �=�O−�Cu is the difference between
the oxygen and copper on-site energies.

The local-density approximation �LDA� determined
values52 of the parameters pertaining to SrCuO systems show
that interladder hopping amplitudes are at least 1 order of
magnitude smaller than their intraladder counterparts. Thus
the two-leg ladder description is an excellent starting point
for these compounds. Inside the elementary cell, t and t� are
the dominant hoppings and their values are comparable. The
difference between the electronic Cu d– and O p–state ener-
gies ECu and EO is about 0.5t. There do not appear to be
ab initio determinations of Coulomb terms for SrCuO lad-
ders. However from what is known for cuprates, we may
estimate a local U of order 5t for the Cu sites, meaning a
strongly interacting regime. In the following we will use
constant values of the band parameters t= t�=1 and �=0.5
and treat the other observables �UCu, tpp / t, UO /UCu, and
VCu-O /UCu� as tunable variables. In order to gain insights into
the physics of the multiband case, we analyze the above
model using a renormalization-group procedure in the inter-
actions; i.e., we assume that all of these are smaller than the
kinetic energy. Hence, the validity of the solutions cannot be
ascertained in the event when some of the interactions were
to grow so large during the flow that they became on the
order of the bandwidth. As was stated above, the experimen-
tal regime corresponds to a situation where Coulomb terms
are sizable. Nevertheless the RG approach allows one to ob-
tain a full analytical solution of this complicated problem

and to make detailed comparisons with the physics of the
one-band system. Furthermore, for the case of the single-
band ladder, one finds that the physical properties in the
weakly and strongly interacting limits are smoothly con-
nected. We will come back to that point when we discuss our
results.

The eigenvalues and eigenvectors of the noninteracting
part are simply obtained by Fourier transforming HT. Since �
is of order t, we neglect the nonbonding and antibonding
higher-energy bands which are mostly of p-type character.
This reduces the model to two lowest-lying bands crossing
the Fermi energy. The Hamiltonian is

HT = �
k��

e��k�nk��, �3�

where �=0,� denotes the bands and � are spin indices. The
operators corresponding to the eigenstates of HT are

amk� �or bmk�� = �
�

�m�a�k�. �4�

e��k� are the eigenvalues of HT �the Cu-O distance is set to
unity�, and �m� are the amplitudes of the overlaps of the
eigenvectors with the atomic wave functions in the unit cell.
This defines the bonding �o� and antibonding ��� eigenbasis
Bo�. For tpp�0, the o and � energy bands are the two lowest
real solutions of the characteristic equations

�� − eo�k���3t�
2 + �2 − eo�k�2� − 2�1 + cos�k��

��− 6tppt�t − t2�� − eo�k�� + 3tpp
2 �� + eo�k��	 = 0,

�� − e��k���t�
2 + �2 − e��k�2� − 2�1 + cos�k��

��− 2tppt�t − t2�� − e��k�� + tpp
2 �� + e��k��	 = 0,

eo = � . �5�

Including tpp increases the values of the �bi� for the O atoms
and makes the o and � bands more asymmetric. However
there are still only two bands crossing the Fermi energy, so
that the analysis remains valid. We note, however, that the
contribution of the oxygen p orbital perpendicular to the one
participating in the Cu-O bonding increases as tpp grows
larger until, for tpp�0.5t, it dominates that of the copper d
orbital. Hence, we confine the range of variation of tpp to
0–0.5t. The interaction part in fermionic language is given
by

Hint = �
j

 �

m�Cu
UCunmj↑nmj↓ + �

m�O
UOnmj↑nmj↓

+ �
m�Cu,n�O

�
�,��

VCu-Onmj�nnj��� . �6�

B. Continuum limit and bosonization

We now express the Hamiltonian in bosonic representa-
tion. The procedure is standard8,53 and we outline only the
main steps here. We linearize the dispersion relation in the
vicinity of the Fermi energy:

Ladder direction
x

FIG. 1. �Color online� Energy contributions to the Hamiltonian
of the Cu-O Hubbard ladder; the figure shows two-unit cells. The
subscripts in the a and b annihilation operators track the coordinate
of the various atoms in a cell.
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HT = �
�q�	Q

�
r��

rqVF�a�rq�
† a�rq�. �7�

r= 
1 denotes right and left movers, with momenta close to
their respective 
kF; Q is a momentum cutoff. The boson
phase fields denoted by ����x� are introduced for each fer-
mion specie. �� contains spin and band indices; x is the
spatial coordinate along the ladder. Fermionic operators are
expressed in terms of the bosonic field ����x� and ����x�
related to carriers fluctuations by


r�� 
 �r�� exp�ıkF��exp�ı�r��� − ����� , �8�

where ��� are the Klein factors which satisfy the required
anticommutation relations for fermions. These ��� do not
contain any spatial dependence and they commute with the
Hamiltonian operator. They influence only the form of the
order operator in bosonic language �through terms of the
form �������� and the signs of the nonlinear couplings
through a � coefficient �the eigenvalue of the
��������������� operator�. The operator is unitary so �2

=1. This equality applies also to linear combinations of fields
�change of basis�. Following Ref. 24, we choose �= +1 in
the �+ /− basis �see below�. We also introduce the phase
field ����x�; its spatial derivative ����x�=�x����x� is canoni-
cally conjugated to ����x�.

Now the Hamiltonian may be rewritten using the above
phase fields. The interaction term in the Hamiltonian can be
split into two parts. One part depends only on the density of
right and left movers and gives—as does the kinetic
energy—a contribution quadratic in the fields �� and ��

�where � labels the eigenmodes in the diagonal basis�, of the
form

H0 = �
�
� dx

2�
��u�K�������2 + 
 u�

K�
���x���2� . �9�

For the noninteracting system, one has K�=1 for all modes,
and H0 is quadratic in the diagonal density basis, which is
simply Bo� �the momentum k� associated with the rungs is
either 0 or ��. Another basis commonly used in the literature
is the total/transverse one, B+−. It is related to Bo� by

��+�−� =
��o 
 ���

�2
, �10�

where � stands for spin or charge depending on which den-
sity is considered.

In general K̂ in Eq. �9� is a matrix, the form of which
depends on the basis in which the densities are expressed.
For example, if we use Bo� at the start of the calculation �the
basis which diagonalizes the tight-binding part of the Hamil-
tonian�, we obtain

û · K̂−1 =�
VFo g0�

� g00
� g0�

�

g0�
� VF� g0�

� g��
�

g00
� g0�

� VFo g0�
�

g0�
� g��

� g0�
� VF�

� �11�

and

û · K̂ =�
VFo 0 0 0

0 VF� 0 0

0 0 VFo 0

0 0 0 VF�

� , �12�

where VFo/� are the Fermi velocities in the o and � bands
and gij

���� are interactions between electron densities in the i
and j bands, with perpendicular �parallel� spin.

In order to express the Hamiltonian in a Gaussian form
�Eq. �9��, which is quite convenient for the RG calculation,

we diagonalize K̂. This defines the Bo basis. In general, Bo is
neither the bonding/antibonding basis Bo� nor the total/
transverse basis B+−. We define the S matrix which describes
the relative orientation of the Bo and B+− bases:

S =
�2

2 �
P1 Q1 0 0

− Q1 P1 0 0

0 0 P2 Q2

0 0 − Q2 P2

� . �13�

One can express the parameters Pi and Qi with the help of
angles � �for the spin part� and � �for the charge part� as
follows:

P1 = cos � + sin � ,

Q1 = cos � − sin � ,

P2 = cos � + sin � ,

Q2 = cos � − sin � . �14�

The remaining part of the interactions has a nonlinear
cosine form in bosonization language. The most convenient
basis to express this contribution is B+− and one finds8,53

Hint�1�
NL = − g1c� dr cos�2�s+�cos�2�c−�

+ g1a� dr cos�2�s+�cos�2�s−�

− g2c� dr cos�2�c−�cos�2�s−�

+ g4a� dr cos�2�s−�cos�2�s−�

+ g1� dr cos�2�s+�cos�2�s−�

+ g2� dr sin�2�s−�sin�2�s+�

+ g�c� dr cos�2�c−�cos�2�s−� , �15�

where � coefficients determine the signs of the gi couplings
�for instance, this gives minus signs for g1c and g2c�. We use
the following notation: Indices 1–4 refer to the standard
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g-ology processes for the left- and right-moving carriers; the
letters a–d correspond to similar processes, when the o and �
bands labels are used instead of the left or the right labels.
The relation between the gi couplings and the ones in Eq. �6�
is given in Appendix A. Note that in the quadratic piece, both
g2- and g4-type terms need to be included in order to prop-
erly account for magnetic fluctuations.54 Examples of inter-
action processes are shown in Fig. 2.

For instance, the two g1d terms describe events where one
right- and one left-moving fermion, both belonging to the
same �0 or �� band, backscatter within that band. If we
bosonize this contribution, we find two terms, g1d cos��1
+�2� and g1d� cos��1−�2�, instead of g1�2�. g1 and g2 corre-
spond to the sum of and to the difference between these
“1d”-type processes, respectively �g1=

g1d+g1d�
2 , g2=

g1d�−g1d

2 �;
g2�0 when the O atoms are included. If the two bands were
equivalent, only the g1 process would be present.

In a standard Hubbard model, only spin-perpendicular
terms are present at bare level, and the last term in Eq. �15�
does not appear at the beginning of the flow. However, Né-
lisse et al.55 pointed out that during the flow toward the fixed
point, additional scatterings involving electrons with parallel
spins are generated by the RG procedure. In our case, we are
including a VCu-O term so that right from the start, our model
contains interactions between carriers with parallel spin.
VCu-O gives rise to a nonlinear cosine term, while the other
spin-parallel processes, which are generated by the RG pro-
cedure, give contributions to the various K.

The g4a term has a nonzero conformal spin and generates
two extra couplings during the renormalization:

Hint�2�
NL = − Gp� dr cos�4�s−� − Gt� dr cos�4�s−� . �16�

These additional terms need to be taken into account because
they might become relevant when the other interactions scale
to zero.

III. RENORMALIZATION-GROUP ANALYSIS

A. Incommensurate filling

We start from the quadratic part of the Hamiltonian and
treat the nonquadratic part, Eq. �15�, in perturbation, using a
renormalization-group procedure. We compute the correc-
tions to the correlation functions to second order in g, and we
incorporate them into the LL parameters K. However g terms
are expressed in the B+− basis, while the quadratic part, Eq.
�9�, is diagonal in the Bo basis, so the Pi�� ,�� and Qi�� ,��
coefficients come into play. As a result, off-diagonal terms
are generated in the K matrix during the RG iteration. At this
stage, Bo is no longer the diagonal basis. In order to fix this,
the Bo basis has to rotate during a renormalization cycle. In
addition to the standard RG equations for the interactions,
we need to find the RG flow of the angles � �for the spin-
density basis rotation� and � �for the charge-density basis
rotation�. So, first we determine the corrections dK1 , . . . ,dK4,
dB12, and dB34 that change the entries of the K matrix during
the initial RG phase. Next, we go back to B+−, using the
transformation S−1. Since B+− is a fixed basis, the increments
of the K-matrix elements give the RG step corrections ex-
pressed in the B+− basis. This new matrix is diagonalized by
the operator S��+d� ,�+d��, where the angles d� and d�
depend on dB�−�+ and dK�−��+� ��=c ,s�. The procedure is
summarized in the diagram shown in Fig. 3.

A detailed derivation is given in Appendix B, where for
the incommensurate case, we set all umklapp terms to zero in
Eq. �B16� and we obtain the following set of differential
equations

FIG. 2. �Color online� Diagram showing some of the scattering
processes. The dark blue �light green� lines are for carriers in the
o ��� bands. This illustrates the notation used for the cosine-type
terms.

FIG. 3. Diagram showing the flow of the di-
agonal basis during the renormalization. The bot-
tom row shows the matrix in the fixed B+−. The
top row corresponds to the diagonal basis, used to
write down the RG equations.
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dK1

dl
=

1

2
�P1

2�g1a
2 + g�c

2 + Gt
2� − K1

2�Q1
2g1a

2 + Q1
2g1c

2 + P1
2Gp

2

+ P1
2g2c

2 +
1

2
�g1

2 + g2
2� + f�P1��g1g2��� , �17�

dK2

dl
=

1

2
�Q1

2�g1a
2 + g�c

2 + Gt
2� − K2

2�P1
2g1a

2 + P1
2g1c

2 + Q1
2Gp

2

+ Q1
2g2c

2 +
1

2
�g1

2 + g2
2� − f�P1��g1g2��� , �18�

dK3

dl
=

1

2
P2

2�g1c
2 + g2c

2 + g�c
2 � , �19�

dK4

dl
=

1

2
Q2

2�g1c
2 + g2c

2 + g�c
2 � , �20�

dg1c

dl
= g1c�2 − �P1

2K2 + P2
2K3

−1 + Q1
2K1 + Q2

2K4
−1��

− �g1g2c + g1ag�c� , �21�

dg1a

dl
= g1a�2 − �P1

2�K2 + K1
−1� + Q1

2�K1 + K2
−1��	

− g1cg�c, �22�

dg2c

dl
= g2c�2 − �P2

2K3
−1 + P1

2K1 + Q2
2K4

−1 + Q1
2K2�� − g1cg1,

�23�

dg�c

dl
= g�c�2 − �P1

2K1
−1 + Q1

2K2
−1 + P2

2K3
−1 + Q2

2K4
−1�� − g1ag1c,

�24�

dg4a

dl
= g4a�2 −

1

2
�P1

2�K1 + K1
−1� + Q1

2�K2 + K2
−1��� ,

�25�

dg1

dl
= g1�2 − �K2 + K1�� + P1Q1�K2 − K1�g2 − �g1cg2c,

�26�

dg2

dl
= − g2�2 − �K2 + K1�� + P1Q1�K2 − K1�g1, �27�

dGp

dl
= Gp�1 − �P1

2K1 + Q1
2K2��

+ g4a
2 �P1

2�K1 − K1
−1� + Q1

2�K2 − K2
−1�� , �28�

dGt

dl
= Gt�1 − �P1

2K1
−1 + Q1

2K2
−1��

+ g4a
2 �P1

2�− K1 + K1
−1� + Q1

2�− K2 + K2
−1�� . �29�

The equation giving the renormalization of g2 measures the
influence of the O orbitals on the particle-hole asymmetry.
The other two are consequences of the g4a term �the term
with nonzero conformal spin�. Note that we introduced g1
and g2—the sum of and the difference between the g1d in
both bands—because the renormalization of g2 involves only
g1 and g2. The derivation of the renormalization equations in
this case is presented in Appendix B. Note also that P and Q
depend on � and � �see Eq. �14��, and hence they change
during the flow.

Additional renormalization equations for the rotation of
Bo are

d cot 2�

dl
=

�dK1 − dK2�tan 4� + dB12

K1 − K2
dl−1, �30�

d cot 2�

dl
=

�dK3 − dK4�tan 4� + dB34

K3 − K4
dl−1, �31�

where the equations for dB12 and dB34 are

dB12

dl
= P1Q1��g1a

2 + g�c
2 + Gt

2�

− K1K2�g1a
2 + g1c

2 + g2c
2 + Gp

2�� − K1K2h�P1�g1g2,

�32�

dB34

dl
= P2Q2�g1c

2 + g2c
2 + g�c

2 � . �33�

The function h is defined by

h�P1� = ��P1Q1�2 + 0.25�P1
2 − Q1

2��−1. �34�

As was found in Ref. 16 the interband scattering process
�type c� renormalizes the Fermi velocities in both bands to a
common value. The additional equation taking this effect
into account is

d�

dl
= ��1 − ���g1c

2 + g2c
2 + g�c

2 � . �35�

The initial value of this asymmetry parameter is �0= 1
2 �̃2��̃

− 1
2 �−1, where �̃=

VFo+VF�

2VFo
. Including this effect does not

change our results, but it allows us to determine whether
intra- or interband scatterings dominate for a given solution
of the RG flow.

If fully spin-isotropic interactions are present in the fer-
mionic Hamiltonian, SU�2� spin-rotational symmetry has to
be preserved during the RG flow. Some additional con-
straints on the RG variables can be derived in this case. For
example, one of them �for type-c scattering� is

g2c − g1c − g�c = 0. �36�

Rather than using these constraints to reduce the number of
RG equations, we check that they are satisfied during the
flow.
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B. Half filling

If the two-leg ladder is half filled, additional umklapp
terms should be included in the Hamiltonian,

Humk = g3�� dr cos�2�s+�cos�2�c+ + �x�

+ g3a� dr cos�2�s−�cos�2�c+ + �x�

+ g3b� dr cos�2�s−�cos�2�c+ + �x�

+ g3c� dr cos�2�c−�cos�2�c+ + �x� . �37�

Since these terms oscillate with �, their influence becomes
important only for very small doping. The extended system
of differential equations describing the RG flow has extra
terms compared with the incommensurate case, and each of
them is multiplied by a doping dependent coefficient J0���.
The full set of equations is given in Appendix B.

For small � these Bessel functions J0��� may be approxi-
mated by 1 and for large � by zero.33,56 Starting from a small
but nonzero doping, assuming that the chemical potential
remains constant during the flow, the renormalization equa-
tion that describes this Mott physics is57

d�

dl
= � − �g3�

2 + g3a
2 + g3b

2 + g3c
2 �J1��� . �38�

The above equation gives an easy way to check if one is
in the insulating or in the metallic phase and which set of RG
equations �with or without umklapp terms� is valid. ��l�
flows to zero for the insulator and to infinity for the metal.
The value of �c depends on the initial values of g3i. The
description of this transition is similar to that found in Ref.
33, which focused on the confinement-deconfinement transi-
tion of two-chain systems.

For the sake of completeness, let us mention that other
types of umklapp terms may appear for the two-leg ladders.
These correspond to scattering of electrons in the bonding or
antibonding bands, a process which becomes important if
one of the kFi is around �

2 . In the presence of a large t�, this
condition may be fulfilled for dopings very different from
zero. For t��0.1t it happens somewhere in the C2S1 phase.
As was pointed out in the discussion of the incommensurate
case, couplings involving �c− flow then to zero. Thus both in
the charge and in the spin sectors, one observes the rotation
from the diagonal basis to the k�=0 /� basis. There are no
processes competing with this, so the only effect is the ap-
pearance of a C1S1 region inside the C2S1 phase. These
processes will not be considered in the following.

IV. PHASE DIAGRAM

Using the system of RG equations, we determine the
phase diagram. We identify the various phases based on the
behavior of the renormalized quantities gi. We iterate the
flow up to a point when some couplings become of order 1.

As usual,8 the bosonized form is very convenient for analyz-
ing the strong-coupling case, since when coefficients in front
of cosinelike terms become large, the corresponding vari-
ables become locked. Subsequently, one may compute the
physical observable in the ground state by looking at the
various order parameters in bosonic representation. These
operators are given in Appendix C. Some of the operators
will now have exponentially decreasing correlations, while
others will decay as power laws. The dominant phase is the
one for which correlations decrease with the smallest expo-
nent. It corresponds to a quasi-long-range order in the ladder.

Two main factors may significantly affect the phase dia-
gram that was predicted for two-leg Hubbard ladders with a
single orbital per site: One is the asymmetry in the g terms
due to the fact that the projections of the Cu and O orbitals
onto the 0 and � bands have unequal amplitudes and one is
the influence of the extra parameters UO, VCu-O, and tpp.

We first investigate the impact of the asymmetry by set-
ting UO=VCu-O= tpp=0 and we choose a small initial value
for UCu �in the range 10−6−10−1�. After this main part we
consider a few additional issues such as the spin-rotational
symmetry and the stability of the fixed points.

As in Ref. 20 we find that the parameter which describes
the behavior of the differential equations system is �̃

=
VFo+VF�

2VFo
. If the ratio

t�

t is constant, �̃ depends only on �: It is
equal to 1 for half filling �then �=0� and it reaches its maxi-
mal value when the Fermi energy is near the bottom of the
band. The parameter �̃ is meaningful only if the Fermi en-
ergy crosses both bonding and antibonding bands. We restrict
our analysis to this case; otherwise one has a single-band LL.

A. Commensurate case

Equations describing the commensurate situation are
given in Appendix B 3. In this limit, umklapp terms lead to
insulating phases with a gap in the charge degrees of free-
dom. These states are quite similar to those presented in Ref.
49. In Sec. V B we will discuss this case and also similarities
and differences with previous studies.

New and interesting physics occurs when the ladder is
doped away from the commensurate case, and we focus on
this situation in Secs. IV C and IV E. In the incommensurate
case, the asymmetry that is present when the unit cell con-
tains two different atoms �Cu and O� plays a critical role and
leads to differences between the single- and multiband mod-
els.

B. Small doping case

For small �̃, cot 2�→0 and cot 2�→0, so the total/
transverse density basis is the eigenbasis at the fixed point. In
this case, g2, g4a, Gp, and Gt are irrelevant. In the notation of
Balents and Fisher,20 this is the C1S0 phase, where only the
c+ charge mode is massless. Fields �c− and �s+ are ordered
with the following values �given mod 2��: �c−=0 and �s+
=0. For s− the mode �spin-transverse�, terms involving both
�s− and �s−, which are canonically conjugated, become rel-
evant, so one observes an ordering competition between
these two fields. The analysis of order operators presented in
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Appendix B shows that d-type superconductivity �SCd� fluc-
tuations dominate if �s− is locked at 0, whereas if �s−=0 an
orbital antiferromagnetic state �OAF� is preferred. In our
model, SCd always dominates for repulsive UCu. This pre-
diction confirms many previous discussions of SCd in two-
leg ladders, including in the strong-coupling regime,29 and in
an inhomogeneous doping situation.58

The advantage of working in bosonization language is
that one can find a reasonable quasiclassical limit of the
strong-coupling fixed point. Using a semiclassical approxi-
mation for the sine-Gordon model59 allows one to find the
doping dependence of the gaps in the system, which up to
now has been obtained only numerically. The following ex-
pression for the soliton mass �it is the lowest-lying excitation
if 0.5	Ki	2� is used:

mi = 2�2gui

�Ki
, �39�

where u� and K� are the velocity and LL parameter of the �th
mode �by definition we are working in the diagonal basis�
and g is the interaction which makes this particular mode
massive. For a more detailed discussion of gap evaluation
using RG, see, for example, Ref. 60.

The plot shows the behavior of the masses versus doping,
evaluated with the above formula. One sees that in the SCd
phase, spin gaps go to zero as doping increases and so does
the charge-antisymmetric mode, which has the largest value.
The behavior of the gaps for small doping, showing a rather
slow decay of their values is in agreement with experimental
observations.13 It is also comparable with predictions ob-
tained after refermionization of the problem and mapping it
onto an exactly solvable Gross-Neveu model with SO�8�
symmetry.61 �However strict constraints for the Fermi
velocities—viz. VFo=VF�—and for the ratios of the g cou-
plings at the fixed point have to be fulfilled then.� There were
also attempts to reduce the low-energy physics of pure Cu
two-leg ladder to an SO�5�-symmetric case.62,63 For our more
general system, these conditions are usually not met. More-
over spurious phases may even appear if one breaks some of
the symmetries, so unfortunately we are not allowed to use
these integrable models in our calculations. However some
predictions, such as the decrease in the gaps with doping and
their relative magnitudes, are in complete agreement with
these special cases.

It is also worthwhile pointing out that the values of the
two spin gaps are always comparable, so that the approxima-
tions that are made when m1�m2 cannot be used here to
calculate the physical properties of our model. This behavior
pertains to the range �	�c1; upon approaching �c1=0.2 from
below, gaps tend to close. As we will show next, a different
phase, C2S1, emerges for ���c2. The intermediate range
�c1	�	�c2 will be discussed separately when we examine
the transition from the C1S0 to the C2S1 phase.

C. Large doping case

If the asymmetry between the bonding and antibonding
bands is larger, cot 2�→� and cot 2�→−�, signaling that
Bo� is the eigenbasis for both the spin and the charge modes.

The RG flow converges very quickly to that fixed point for
large dopings, typically when ��0.41. This corresponds to
�̃=4.2, a value that agrees with that found previously in Ref.
20. Interactions are not able to renormalize the ratio of the
band Fermi velocities � to 1 anymore, which confirms that
the Bo� basis is relevant for this regime. In the large doping
phase, only g1
−g2 are relevant. If one takes into account
the rotation of the diagonal basis, which occurs as cot 2�
varies, it appears that this flow produces only one massive
spin mode, and we get the C2S1 phase predicted by Balents
and Fisher.20 The interaction term which causes this behavior
in our case is identical to theirs once expressed in current-
density formalism. Using the same method as the one de-
scribed for low dopings, we are able to evaluate the doping
dependence of the gap of strongly doped ladders. The result
is shown in Fig. 5.

One can easily identify the nature of the C2S1 phase in
bosonic field language: Because the diverging interaction is
go=g1−g2	0, the slowest decay of correlations is observed
for the charge-density-wave �CDW� operator in the bonding
�“o”� band.

For large enough dopings ���0.41�, a gap will open,
even if one starts from very small bare values of the interac-
tions. In the range 0.28	�	0.41, angles still flow to the
fixed-point limits cot 2����→�, but g1 and g2 grow very
slowly. One needs to choose larger initial values of the bare
interactions �but still smaller than the hopping t� and/or as-
sume that one is close to the C2S1 region �starting from large
cot 2����� to find the gap exactly in the relevant spin mode.
We conclude that the C2S1 phase exists in the entire range
���c2=0.28 and that when 0.28	�	0.41, g1 and g2 are
very weakly relevant and thus very sensitive to higher-order
corrections.

Previously, the existence of a C2S2 massless phase was
predicted very close to the bottom of the band, �i.e., when �̃
becomes quite large�. Our calculation, however, shows that
the C2S1 phase remains stable in that limit. The reason for
this difference stems from the choice of initial conditions in
Ref. 20. For single-orbital ladders, when only on-site Hub-
bard interactions are included, the initial g2 is accidentally
zero. In our case, the presence of O orbitals always implies a
nonzero initial g2. This states that the g2 term drives the
transition for very large �̃.

At the bottom of the band the dispersion is quadratic, so
the bosonization procedure, which requires a linear spectrum
around the Fermi points, is not valid. The calculation is done
using conventional diagrammatic techniques, and it confirms
the stability of the C2S1 phase with the same relevant cou-
pling as found before.

D. Quantum critical regime between the C1S0 and the C2S1
phases

We now turn to the intermediate regime �c1	�	�c2. Our
key finding is that in this range, a massless phase exists,
which has not been reported previously because it is found in
the asymmetric limit, i.e., when the unit cell contains both
Cu and O orbitals.

When one approaches the range �� �0.2;0.28� either
from below or from above, gaps appear to go to zero �see
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Figs. 4 and 5�. For �c1	�	�c2, one has a line of critical
points where the phase is totally massless �C2S2�. Strong
fluctuations, in particular near the critical end points �c1 and
�c2, cause poor convergence of the RG differential equation
system. What is more, the angles in Eq. �30� vary signifi-
cantly in a narrow range of l. Using controlled approxima-
tions, we obtain an analytical solution that reveals the behav-
ior of the system in this phase: We approach the critical end
points from the massive phases; we keep only the dominant
couplings, which gives us a simplified system of equations.
Next we analyze the equations describing the angle rotations
and look for the range where derivatives become large,
which takes place close to the fixed points. This gives us a
condition for the divergence of cot 2����. Once the fixed
point is known, one may simplify further the RG differential
system. Now computing the RG exponent of each coupling
is straightforward and enables us to find those couplings

which remain relevant within the range of interest.
Let us first consider �c2=0.28. This point corresponds to

the initial value cot 2�=1. A numerical solution shows that
the signs of �dK1−dK2� and B12 are the same and positive,
whereas the sign of �K1−K2� is negative. From this simple
analysis we infer that below this value, �cot 2�� decreases to
zero and that above, it increases to infinity. Now, g1 and g2
are relevant only when �K2+K1�− P1Q1�K2−K1�	2. K2
needs to decrease strongly for this condition to be fulfilled
and it is necessary to have nonzero values of f�P1� and Q1 at
the fixed point. This condition corresponds to �cot 2��→�,
so one sees that below �c2=0.28 the g1 and g2 couplings
cannot be relevant.

The analysis pertaining to �c1=0.2 is less straightforward.
It involves �cot 2�� and, because �dK3−dK4� and B34 have
opposite signs, it is harder to get the flow correctly. The
transition between going to zero and diverging takes place
when the absolute value of the two terms are equal. A de-
tailed analysis of the angle dependent part of d cot 2� shows
that this happens for �c1=0.2. When �cot 2��→�, then K4

−1,
which is much larger than 1, influences the renormalization
of the cos �c− coupling on equal footing with K3

−1. This is the
reason why these interactions are not relevant anymore.

The above first-order RG analysis was done in the vicinity
of the critical end points and proves that when �
� �0.2;0.28� all interaction terms which are relevant outside
are irrelevant inside this range. We have confirmed the above
simplified analysis by performing a numerical analysis of the
full set of equations, which shows that no other coupling is
relevant. We see that a C2S2 phase is present between the
C1S0 and the C2S1 phases. Hints for the possible existence
of such state came from numerical studies64 or from some
special models of ladders65,66 with specific types of geom-
etries. However we give here a direct proof of the existence
of this phase for a generic ladder.

The C2S2 phase is a LL where Bo� is the fixed-point
eigenbasis for the charge modes and B+− that for the spin
modes. As far as the charge modes are concerned, K4�o is
significantly smaller than 1, while K3�� is very close to 1 at
the fixed point. The spin parameters are both close to 1 be-
cause of the spin-rotational symmetry. Thus one expects that
correlation functions of band-density fluctuations of the form
c+/−,o

† �ic+/−,o have the slowest decay. Logarithmic corrections
need to be evaluated, owing to the presence of a �single�
marginal coupling go=g1−g2�0. They show that a spin-
density wave �SDW� within the o band �SDW�o�� is domi-
nant.

E. Influence of UO and VCu-O

So far, we have discussed only changes that stem from the
presence of O orbitals in the structure. We now turn on the
interactions involving the O atoms—UO and/or VCu-O—and
probe whether these additional terms affect or not the phase
diagram that we have found previously. In the following, we
assume that these interactions do not generate new types of
terms in bosonization language but that they modify the ini-
tial parameters of the flow. �For a detailed discussion of
V-type terms, see, for example, Ref. 67.�
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FIG. 4. �Color online� Doping dependence of the gaps in the
spin-transverse �1; squares�, total �2; circles�, and charge-transverse
�3; triangles� density modes for the SCd phase. The m� are given in
units of �0, the initial energy cutoff of the RG procedure �on the
order of �1 eV�.
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FIG. 5. �Color online� Doping dependence of the gap for the
o-band spin mode. Note that the gap is given in units of the cutoff
�o, the value of which decreases quickly when one approaches the
bottom of the upper band.
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In the C1S0 phase, SCd becomes less stable if large UO or
VCu-O are present, but it always has a lower free energy than
that of the OAF phase. When both UO and VCu-O are present,
they seem to have competing effects. One would need to
assume a very large attractive bare VCu-O �VCu-O	−3.6UCu�
in order to stabilize a phase different from SCd. It would be
an s-type superconductivity �SCs� phase with �s−=0, �s+
=0, and �c−=� /2 and it would be very robust, even if the
Fermi level approaches the bottom of the � band. The exis-
tence of this phase, generated by VCu-O, was first pointed out
in Ref. 49. The discussion in Ref. 49 pertains to the half-
filled case. The nature of the phase transition between the
two superconducting phases in ladders is described in detail
in Ref. 24, so we are not going to discuss this point. In the
physical range of values of bare VCu-O, one does not expect
SCs to dominate.

In the C2S1 phase, UO and VCu-O do not change the re-
sults significantly. Their main influence is that they make the
gap smaller. It is to be expected, since the CDW in the o
band has an overlap with O atoms sitting between two Cu
and introducing electron repulsion on O atoms makes the
CDW less stable. For very large attractive VCu-O, the SCs
phase re-enters.

In the C2S2 phase, increasing VCu-O has little effect on �c2

but it shifts �c1 to higher values. For
VCu-O

UCu
�1 the quantum

critical line still exists and an unphysically large ratio of �5
would be required to suppress the massless phase and to
observe a re-entrant C1S0 phase with superconducting fluc-
tuations. The �c1 phase boundary is not affected by UO or by
VCu-O.

V. DISCUSSION AND CONSEQUENCES

In this section, we discuss our findings in connection with
previous work done on ladders. We also show that the C2S2
and C2S1 phases possess an orbital current quasi-long-range
order and we compare our result with other proposals of
current patterns for cuprates.

A. Differences with the single-band case

In the derivation of the RG equations using current alge-
bra, total particle-hole symmetry was assumed. Yet, it was
shown68 that V-type interactions, for instance, can generate
terms which break this symmetry at the beginning of the
flow. They generate the following terms:

�a� A sine interaction term, g2�g1o
� −g1�

� .
�b� Interactions such as g2o

� −g2�
� and g1o

� −g1�
� , of the form

��s+��s−, which are included in the definition of the non-

diagonal part of the K̂ matrix �see Eq. �9��. This implies, for
instance, that P1� P2.

�c� g4-type interactions, which generate different veloci-
ties for the spin and charge modes. �Per se this is not a
relevant perturbation but it enhances the impact of the other
two contributions.�

When O atoms are included between Cu atoms, even if

only UCu is present, the bare g0�
�ao

4

VFo
UCu is different from

g��
�a�

4

VF�
UCu and particle-hole symmetry does not hold any-

more. �In the limit E→�, one has �ao
4 −�a�

4 �E−1 and
VF�E−1 so these two effects cancels out and go−g� is still
�O�1��. This shows that it is quite important to include the
oxygen atoms in the description of the two-leg ladder.

The system of RG equations that we have derived does
not impose such particle-hole symmetry constraint. Hence it
may flow to a new fixed point which corresponds to the
C2S2 phase. At the fixed point, B+− is the diagonal basis for
the spin modes and Bo� is the diagonal basis for the charge
modes. It should be emphasized that for all other phases
�which have been found previously for single-orbital lad-
ders�, initial conditions which reflect the symmetries of the
problem impose that the diagonal basis at the fixed point be
the same for the spin and for the charge modes. The presence
of the three bands thus allows the symmetry between spin
and charge bases to be relaxed during the flow and is instru-
mental in stabilizing the C2S2 phase. For the case of a single
band, Emery et al.69 pointed out that two additional consid-
erations could lead to a significant modification of the phase
diagram obtained in Ref. 20, using a weak-coupling pertur-
bative approach. The first one was the inclusion of all inter-
actions, not simply the relevant ones; the second one was the
stability of the fixed points. For example, in Ref. 69, it was
argued that the stability of the C2S1 phase was compromised
because of a “spin proximity effect.” However this C2S1
phase was found in DMRG numerical studies.70 In our cal-
culation it is important to note that all possible interactions
were taken into account, and we did not impose any a priori
symmetry. The presence of the C2S1 phase, which we do
find in our calculation, is thus intimately connected with the
rotation of the spin basis toward the fixed-point Bo� eigen-
basis.

As we argue now, performing a rotation of the eigenbasis,
however complicated as it may seem at first sight, is the
proper way to implement the RG procedure for all dopings.
The bosonic representation is convenient for handling the
C1S0 phase, and let us assume that we work within the fixed
B+− basis. Far away from half filling �for instance, near �c1�,
the quadratic part of the Hamiltonian exhibits “significantly
large” off-diagonal terms at the start of the flow. However,
since B+− is the fixed-point eigenbasis, these contributions
eventually go to zero at the end of the RG process. The
evolution is beyond the regime where perturbative calcula-
tions are reliable. Importantly, this will happen while inter-
actions renormalize so we will not have any information
about the physical nature of the ground state in this case. For
���c2, Bo� is the fixed-point eigenbasis; hence, fermionic
g-ology,16 where one uses the Bo� representation, is well
suited for studying the C2S1 regime. However, the C2S2
phase lies beyond the limit of perturbative analysis in that
language. One would observe the divergence of some fermi-
onic couplings, while some nontrivial combination of them
would remain quite small. By contrast, for all dopings, our
approach amounts to adjusting the basis in such a way as to
remain in the weak-coupling regime of the off-diagonal ele-
ments of the K matrix during the entire flow. It allows us to
track the evolution with doping of massive phases into a
massless phase as a result of a symmetry breaking �the eigen-
basis for the spin and the charge modes� due to the oxygen
atoms.
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At each step, we monitored the spin-rotational invariance
of the Hamiltonian through Eq. �36� to check that our equa-
tions were producing a reliable flow. The result for the case
of small as well as large dopings is displayed in Fig. 6.

In addition, in the C2S1 phase, there is one single mass-
less spin mode, so that its K parameter must remain equal to
1 during the flow. We verified that this property does hold.

B. Half filling and close to half filling

At half filling, the charge-symmetric mode becomes mas-
sive. All modes are gapped and spatial correlations decay
exponentially. This is due to three relevant umklapp cou-
plings. The spin- and charge-transverse modes are locked
into the same minima as before, and the transition affects
only the total charge mode. One may view this transition as
a quantum order-disorder Ising type. At half filling the domi-
nant phase is the quantum disordered D-Mott phase, which,
upon doping, turns into SCd, its dual counterpart. For large
attractive V, an S-Mott phase, the dual counterpart of SCs,
dominates at half filling. When we vary the strength of the
interactions, the boundaries between these two phases look
similar to those found for incommensurate fillings.

The half-filled case for the Cu-O ladder was discussed by
Lee et al.,49 both in the weak- and in the strong-coupling
limits. For weak interactions, we may directly compare their
results with ours. They used current algebra to treat the low-
energy physics of ladders with and without outer oxygens

�five and seven atoms in the unit cell, respectively�. In the
latter case, a spin-Peierls bond-density wave �BDW� �see
Appendix C� dominates, whereas a D-Mott phase is favored
in the former case. The authors claimed that this difference is
due to a larger leg to rung anisotropy when outer oxygens are
not present. The outer oxygens were taken into account in
our model but we nevertheless find a D-Mott phase. More
generally, our entire phase diagram is very similar to their
“five-orbital” case. A possible reason for this discrepancy
could be that their tpp is barely less than the Cu-O hopping
amplitudes. In our calculations tpp is much smaller, in accor-
dance with LDA studies52 and with experiments. Recall that,
as was described in Sec. II, whenever tpp�0.5t �or t��, non-
bonding p orbitals become relevant degrees of freedom;
these were not included in our model. Similarly a large initial
value of the nearest-neighbor interaction V causes an ex-
change of the weights of the d and p orbitals in the lowest-
lying bands during the RG flow. This limit is beyond the
range of validity of a simple RG approach.

The strong-coupling case �the so-called charge-transfer
regime� is important because, for real inorganic materials, U
is usually of order 5t. Still, two features of the weak-
coupling regime remain valid in strong coupling: One is that
spin-charge separation holds and the other is that in the SCd
phase �for instance� there is still an exponential decay of DW
operators. A connection between the phase diagrams of these
two regimes is often suggested in the literature. For instance,
in the case of Cu-O ladders close to half filling �the strong-
coupling case discussion in Ref. 49�, a t-J approximation
was used. It gave a uniform phase—related to D-Mott—in a
broad region of positive UCu-VCu-O phase space. For large
attractive VCu-O, a phase with holes localized around copper
atoms is found, probably connected to our SCs ordering. Our
phase diagram matches the above description. The SCd
phase, which we find close to half filling, is clearly seen in
numerical studies. The C1S0 phase was connected with this
type of ordering in Ref. 29, where it was also shown that the
gap preventing a DW-type ordering decreases upon increas-
ing the doping. In Ref. 71 it was found that the region where
this phase is stable can be extended up to U=4t. In the t-J
model, the rigidity of SCd with respect to a finite difference
between the chemical potentials of the two legs was also
established.58 The same type of ordering �rung singlet� also
dominates at half filling for a special choice of parameters
giving an SO�5� symmetry,72 since in that case one may
solve the model exactly. All these results were obtained for
single-band ladders. Quantitative differences occur when
oxygen atoms are included in the unit cell, and these were
analyzed in a numerical study.50

A few studies were devoted to the intermediate and large
doping regimes. We discussed the C2S1 phase �see above�,
and as far as the C2S2 phase is concerned, a DMRG study64

suggested the existence of such gapless phase well inside the
bands for a zigzag ladder. The occurrence of a massless
phase in the strong-interaction limit would be certainly re-
markable.

C. Orbital current patterns at intermediate and large dopings

In Secs. IV, V A, and V B, we had set tpp=0. We now
assess the influence of this hopping term on the phase dia-
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FIG. 6. �Color online� Evolution of g2c �light yellow line� and
g1c+g�c �dark red line� versus number of RG steps during the flow.
This figure shows that spin-rotational symmetry is preserved: �a�
small � phase; �b� large � phase.
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gram. As long as tpp	0.5t, our RG method remains valid,
and only the initial parameters change with tpp. As we in-
crease tpp, we note that �̃ increases for a given doping, but
that both �c1 and �c2 are decreasing. For tpp=0.5, their values
are about half of that quoted for tpp=0. A negative tpp �the
electron-doped case� has the opposite effect. This influence
of tpp�0 can be understood as an increased asymmetry be-
tween bands.

The phase diagram, which summarizes our study of the
Cu-O ladder for carrier concentrations between half filling
down to the bottom of the “upper” band, is shown in Fig. 7.
A spectacular effect of tpp is that it leads to new types of
current loops, involving oxygen sites. The range of param-
eters where orbital current patterns �OCPs� dominate is seen
in Fig. 7.

A finite tpp allows direct current flows between oxygen
atoms, giving rise to additional patterns, enclosed inside the
elementary cell. One of these preserves the mirror symmetry
on the � axis �the axis parallel to the chain direction and
passing through the midrung oxygens�, and it is of special
importance. This is because we have shown that, at least for
moderate dopings, operators in the o band dominate. The
current operator between two atoms “a” and “b” is defined as
ja-b=��,��
�a

† 
��b−
��b
† 
�a �we sum over band indices� and

the total current pattern operator is given as a sum of currents
on each bond. For symmetry reasons, if the current pattern
has a mirror symmetry along �, then the total current opera-
tor has the form of a particle-hole fluctuation in the o band.

Two conditions must be met in order to get a dominant
contribution: The pattern must form closed loops originating
from and ending at Cu atoms, and it has to possess a mirror
symmetry with respect to the plane containing � and perpen-
dicular to the plane of the ladder. One of the current patterns
preserves both of the required constraints and, since it is
similar to a configuration proposed by Varma, we call it
“VarmaI” type �Fig. 8�. Then, because the current operator
has the same dependence on phase fields as the DW operator,
these fluctuations have the same power-law decay. Comput-
ing their amplitude will tell us which type of order domi-
nates.

In the large doping regime �C2S1�, we compare the am-
plitudes of the “normal” CDW and of the OCP+CDW. The

amplitude of the latter is found by summing current operator
contributions for loops with one Cu and two O atoms. We
use the mirror symmetry and add first equivalent pairs of
currents. Each of these pairs gives a contribution propor-
tional to tij Im��a��bi�� or tij Im��bj��bi��, where tij is the
hopping parameter between the relevant atoms. We empha-
size once again that in the single �Cu�–orbital case, �a�=1 so
that the current operator between Cu atoms has the usual
interband form. It is the presence of oxygens that gives
Im��a��bi���0, allowing the geometry of a Varma-type pat-
tern to appear in the theory.

A numerical calculation shows that these quantities are of
order 1 and change only by a few percent when the doping
increases from 0.25 to the value of � at the bottom of the
band. The result of this procedure �the amplitudes of the
currents determined by the products of �ij coefficients� is
shown in Fig. 9. Since it is easier to visualize a commensu-
rate pattern, we chose �=0.9 such that kFo=1 /4 �note that
only the “0” band would cross the Fermi level for such a
large value of the doping�.

Due to current conservation, the weakest link between
atoms determines the maximum value of the current. It is
clear that the magnitude of tpp determines whether or not the
OCP+CDW state may exist. Since the total amplitude is
proportional to 2tpp�ijIm��bj��bi�� multiplied by the number
of links, it is straightforward to obtain a threshold value of
tpp
�min��0.3t, above which the OCP+CDW phase dominates.

Varma’s work was concerned with the strong-coupling re-
gime in two dimensions, and the stability of the current pat-
terns was studied in mean-field theory. The fact that we were
able to find such a state in one dimension, in the weak-
coupling limit and with purely repulsive interactions, gives
an interesting perspective on the possible existence of such
orbital currents. Note that a type of ordering similar to the
one we find �current+DW� has been suggested in numerical
studies of two-leg ladders.30,44 We will return to this issue in
Sec. V D, where we make a contact with strong-coupling
results. The statement about the existence of OCP states
given above obviously holds also for the C2S2 phase, where
CDW fluctuations are replaced by SDW fluctuations �Fig. 8�.
We also note two differences between our orbital current
states and Varma’s: In our case, the structure is incommen-
surate �the modulation is doping dependent� and we get an
additional DW modulation. Hence, the OCP+DW state also
share similarities with the DDW phase.46 The main point is
that introducing tpp gives the possibility of having new types
of current loops involving oxygen sites. Phases with time-

FIG. 7. �Color online� Phase diagram of two-leg Hubbard lad-
ders versus doping for UCu�0. �=0 corresponds to the half-filled
case; umklapp terms which open up a gap in the charge-symmetric
mode are not included here. DW+OCP denotes phases with OCP
on top of a SDW or a CDW.

FIG. 8. �Color online� Current pattern in the C2S2 phase. It has
a mirror symmetry with respect to the � axis plus an additional
SDW. The modulation has an incommensurate spatial periodicity
2kF0

−1.
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reversal symmetry breaking have been widely investigated,
but for single-orbital models, currents flow along Cu square
plaquettes, giving rise to the OAF state. As was shown in
detail by Fjærestad and Marston,73 these are described by
interband creation-annihilation process �
o

†
�. The order
operator in bosonization language is given in Appendix D �it
is the OÔAF�r� operator� and, this type of quasi-long-range
order is stable provided one introduces an attractive VCu-Cu.

What about current patterns in the strong-coupling re-
gime? This issue was investigated numerically. One paper30

showed that if time-reversal symmetry is artificially broken
by adding a magnetic field, one promotes a state with OAF
currents and a CDW modulation for the two-leg ladder, very
similar to the one suggested in Sec. IV. Another44 considered
variants of t-J models, in hopes of finding current pattern
phases. Although somewhat artificial values were assigned to
some of the parameters, this study suggested that quasi-long-
range order of the current patterns could be obtained pro-
vided one changed the internal description of the rung. Fur-
thermore, the current pattern is accompanied by a charge-
density-wave structure.

It should be pointed out that both papers established a
direct connection between the strong- and the weak-coupling
regimes. For example, Ref. 44 showed that the spatial decay
of current-current correlations is similar in regions of param-
eter space corresponding to weak- or large-coupling RG.
This paper also emphasized that in order to obtain current
patterns, one needs to go beyond theories using properties of
SO�5�-symmetric models. This confirms our findings that
new physics emerges in formalisms where symmetry break-
ing is a priori allowed.

D. Experimental systems

Experimentally, it is rather difficult to vary the doping in
ladder compounds, and the large doping regime is still
inaccessible.74 Furthermore, different methods �NMR, opti-
cal conductivity, and x-ray measurements� yield different
values of the doping for a given system.75 One of the most
interesting compounds, Sr14−xCaxCu24O41, contains both
chains and ladders, and it was shown that a change in pres-
sure may cause a charge transfer between the two.9 Calcium
is also a factor that affects the carrier content of the ladder. In

the low doping regime, this system displays spin gaps, as is
well established in many NMR studies; this will be discussed
in detail in Sec. VI. As far as charge degrees of freedom are
concerned, the situation is more complicated. There are op-
tical conductivity measurements showing CDW ordering in
these systems at ambient pressure.76 This kind of ordering
may be due to a large VCu-Cu �Ref. 77� not taken into account
in our model or to interladder electrostatic interactions. The
SCd phase appears under pressure, with a maximum tem-
perature on the order of 10 K for an optimal pressure of 3.5
GPa. The role of pressure in this transition is not clear: It
may change the bandwidth, the couplings between ladders,
the screening of the intra- or interladder interactions, or the
doping. Recently,78,79 soft-x-ray measurements were per-
formed for this system. The main conclusion is that an insu-
lating “hole crystal” phase exists for commensurate fillings.
It is suggested that this phase melts for other dopings. The
authors of these papers interpreted their findings by invoking
strong on-rung hole pairing. This analysis supports the pic-
ture that emerges from our study of the low doping regime.

VI. NMR PROPERTIES

A. Spin susceptibility and NMR relaxation rate

The spin operator with momentum q is defined as

Sm
i �q� �

1

2 �
k�1�2

cm�1
† �k + q��îcm�2�k� , �40�

where c�a ,b �the annihilation operator of a hole on Cu or

on O, respectively� and �î is a Pauli matrix. From linear-
response theory, the time-ordered susceptibility reads

�m�m
i �q,ı�n� �

1

2L
�

0

�

d��T�Sm�
i �q,��Sm

i �− q,0��exp�ı�n�� .

�41�

The above function is defined only for Matsubara frequen-
cies �n. Taking the analytical continuation, one obtains the
retarded susceptibility �m�m

R �Ref. 8� and hence derive53 ana-
lytical expressions for the measured NMR properties of the
system. The NMR signal comes from a contact interaction

FIG. 9. Current amplitudes within the o band,
given in tpp units. For this particular doping, the
pattern has an eight-cell periodicity. The figure
shows half a period �the other half is simply ob-
tained by repeating the amplitude pattern and re-
versing all the signs�.
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between a nucleus and the surrounding cloud of electrons in
an s-orbital state.

The temperature dependence of the shift in �Zeeman� fre-
quency of the mth nucleus stems from hoppings of carriers
from the mth atom s orbital to the highest occupied molecu-
lar orbital p or d orbital of the neighboring sites. Thus, the
Knight shift is

K̄m
i =

Cm

�m�e�
2�

m�

�m�m
Ri �p → 0,� = 0� , �42�

where the summation is taken over all neighboring Cu d and

O p orbitals. The overlap coefficients �m�
˜, which enter �m,m�,

are evaluated using first-order perturbation theory. We in-
clude hoppings between a Cu s orbital and an O p orbital on
the neighbor sites or a Cu d orbital on next-nearest-neighbor
sites, as well as hoppings between an O s orbital and a Cu d
orbital on neighboring sites.

The spin-lattice relaxation rate is also affected by the elec-
tronic environment. The signal measured on the mth nucleus
is given by


 1

T1m
�i

=
Cm

2

�m�e�
2�

�
p

Im��mm
Ri �q,�Zm��
�Zm

. �43�

In the following, we omit the “i” subscripts because we
are working with spin-rotational invariant models. Taking
into account the fact that the Fermi surface consists of pairs
of points of the form 
kF, the sum in 1

T1
can be divided into

two independent parts: a uniform piece �q around k� =0� and
a staggered piece �q around k� =2kF�.

Using the �m�
˜ allows us to connect the time-ordered cor-

relation functions R��r�x ,��� of carriers in band � �they are
introduced in the bosonic phase field language�, with the
Rm�m�r�x ,��� defined for a site basis as

Rm�m„r�x,��… = ��m�o
˜�2��mo

˜�2Ro„r�x,��…

+ ��m��
˜�2��m�

˜�2R��r�x,��� . �44�

In order to get the retarded �m,m�
R �q ,�� entering Eqs. �42� and

�43�, we use the fact that correlations for spin operators and
for their complex conjugates are equal, and we simply obtain
the retarded spin susceptibility by a Wick rotation,80

�m�m
Ri �x,t� = 2��t�Im�Rm�m„r�x,��…��=ıt+�, �45�

followed by Fourier transforming the last function.
Because of conformal symmetry in our 1D quantum

theory, results for zero-temperature correlations can be ex-
tended to finite temperatures by simply substituting for the
complex coordinates the following expression:

r��x,�,�� =
u��

� �sinh� x − ıu��

u��

�
�sinh� x + ıu��

u��

�
� .

�46�

The substitution r��x ,��→r��x ,� ,�� gives us the tempera-
ture dependence of the susceptibilities. This procedure is

valid both for the uniform and for the staggered parts of the
magnetization. We write the time-ordered correlation func-
tions R��r�x ,��� in each band in terms of diagonal modes
R��r�x ,���=F���� for the staggered and the uniform parts,
separately. The form of F���� depends on whether the �th
LL mode is massless or massive and it will be presented
below. Given F����, substitution �46� allows us to obtain the
temperature dependence of Km and T1m

−1 . However as the tem-
perature increases, the form of F���� changes. Generally it is
assumed that above the temperature T� corresponding to the
value of the gap ��, thermal fluctuations make the �th mode
massless. For example, at T=0, in the C1S0 phase, one starts
with three gapped modes �two for the spin and one for the
charge�. We increase T until the energy of the first gap, �s+,
is reached. Above the corresponding temperature Ts+, we
may consider that there is effectively one gapped and one
gapless spin mode and similarly for the charge sector. The
others gaps ��s− and �c−� will successively close at tempera-
tures Ts− and Tc−.

B. Doping dependence of the NMR signals

A number of papers81–83 were devoted to the computation
of magnetic properties of two-leg ladders by assuming sym-
metry entanglement at the fixed point �SO�5� or SO�8��. Yet,
following the discussion in Sec. IV, we use simpler, approxi-
mate methods which nevertheless have a wider range of va-
lidity.

1. Uniform part

For the uniform magnetization, only spin correlations
need to be taken into account. Because the spin density is
generally related to the spin phase field ��x�= 1

� ����x�, the

zero-momentum part of R̄o is a linear combination of bosonic

correlations calculated in the diagonal basis R̄��r�. In the
massless case it is known from LL properties and given by

R̄� =
1

ri
2 . �47�

The contribution to NMR of these power laws has been
evaluated many times before in the literature. One gets a T0

dependence for the Knight shift and T1 for the relaxation
rate. One may improve these results in both the high- and the
low-energy limits. At low energies, logarithmic corrections
from relevant and marginal couplings g��� �where the en-
ergy scale � may be related to the temperature� should be
taken into account. Then, g1c and g2c contribute to the o and
� bands, g1−g2 to the o band, and g1+g2 to the � band. At
high energies, the curvature of the bands may be taken into
account using a random-phase approximation �RPA�, follow-
ing Refs. 23 and 84.

In the massive case we use the massive Gaussian model to
obtain fluctuations around the static quasiclassical solution
�equilibrium position� and this leads to
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R̄� = Ki��0�miri� + �2�miri�� , �48�

where we have used the fact that for harmonic fluctuations
around the soliton ��i�x���i�x�−�oi�x�, correlations are
given by a Bessel function ���i�r���i�0��
�0�mir�. A first-
order expansion, valid for large r, gives exactly the same
expression as that found in exact calculations.85,86 One needs
to evaluate the following integrals �the exact formulas for the
LL ��k ,�� are known87 but it is not necessary to use them
here�:

1

T1m
=� dt�

x0

���m�
˜2�x0��R�x0,t� , �49�

K̄m = �m�
˜2�k = 0���

m�

�m�
˜2�k = 0��� dtdxR�x,t� , �50�

where the summation over x0 accounts for the momentum

dependence of �m�
˜�k�. For the uniform part, integrals can be

calculated analytically,

KimiVi

�
�0�miri�

cosh���x − ıVit�
Vi�

�sinh���x + ıVit�
Vi�

� − sinh���x − ıVit�
Vi�

�cosh���x + ıVit�
Vi�

�
�sinh���x − ıVit�

Vi�
�sinh���x + ıVit�

Vi�
� �b

c . �51�

The appropriate bound b ,c is chosen for the Knight shift or
for the relaxation rate, and it depends on whether one inte-
grates over a time or a space-time domain.

The results for the Knight shifts, calculated for different
atoms and different dopings, are shown in Figs. 10 and 11.
The discussion of the relaxation rates is postponed until after
the evaluation of the staggered part because the quantity
which is measured in experiments is the sum of the uniform
and the staggered parts of the relaxation rate.

For the C1S0 phase, an activated behavior exp�− �

T � is
seen for the Knight shifts of all the atoms. This is shown
clearly in the logarithmic plots in the inset of Fig. 10. How-
ever let us stress that in the C1S0 case we have two spin
gaps, so one expects a more complicated shape than a simple
straight line. For higher temperatures the Knight shift satu-
rates to a constant value. As expected for the uniform sus-
ceptibility, the responses of the different atoms are similar;
only their amplitudes are different �this is because of the
��m�
˜�2 coefficients�. For larger dopings there are less elec-
trons in the conduction band and their velocity is smaller, so
the saturation value also decreases. As the doping increases,
spin gaps decrease and curves saturate at a lower T until we
reach the quantum critical point �QCP� at �=�c1. This behav-
ior for the susceptibility is described in Ref. 23. In that case,
a QCP appears in the presence of VCu-Cu; in our case, doping
drives the transition.

For the C2S1 phase, we obtain a finite susceptibility even
at zero temperature. This feature comes from the massless
spin mode. The central oxygen atom which is coupled only
to the gapped band does not give a finite susceptibility at T
=0. For the second, massive mode we observe a behavior
similar to the one described above for the C1S0 phase, with
the single activation gap shown on the inset of Fig. 10�b� for
two dopings.

For the intermediate doping C2S2 phase, including loga-
rithmic corrections is the only way to generate some weak T
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FIG. 10. �Color online� Temperature dependence of the Knight
shifts for �a� the different atoms in the elementary cell and �b�
different dopings in the C1S0 phase. The activation gap at low T is
shown in the inset.
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dependence. They arise mainly from the presence of the mar-
ginal g1 and g2 terms. Their influence on the uniform suscep-
tibility is described in detail in Refs. 23 and 88. Differences
in the amplitudes of the Knight shifts for the various atoms
in the elementary cell stay pretty much the same from one
phase to the next, since these amplitudes are simply deter-

mined by �̃ coefficients.

2. Staggered part

For q=2kF, both the spin and charge parts contribute to

the band-correlation functions. The band R̃o/� with 2kF wave
vector is a product of a spin and a charge part, R�=R�

�R�
� .

The form of F���� depends on the fixed-point eigenbasis for
the angles and on the possible existence of gaps.

The expression for the gapped spin phase was obtained
using the expression for the 2kF part of the spin-density
operator correlations, which is given by
�Oo/�SDW�r�Oo/�SDW�0��2kF �cos��1
�2�. The last form
could be evaluated using the fact that �i=�oi+��i, where
the fluctuations of ��i are described by a massive Gaussian
model, as was shown in the case of the uniform part. For
gapped spin ��� modes, there are two possibilities:

R̃o/�
� = sinh�K2�0�m2r2� 
 K1�0�m1r1��

��m2a�K2�m1a�K1 for the C1S0 phase,

R̃o
� = sinh�K2�0�m2r2���m2a�K2 for the C2S1 phase.

�52�

In the gapless case, one gets a power-law behavior. For
the high-T limit of the C1S0 phase, where the B+− eigenbasis
is relevant, we find

R̃� = 
 1

ri
�Ki/2
 1

rj
�Kj/2

, �53�

where � corresponds to the band index and i=1,3 and
j=2,4 are the LL modes.

For the C1S0 phase, the charge mode is only partially
gapped: The field �3 is locked so the charge-antisymmetric
mode does not give any contribution to SDW, but the mass-
less, “4” �charge-symmetric� mode gives a power-law contri-
bution

R̃o/�
� = 
1

r
�K4/2

. �54�

For the other phases, both charge modes are massless. In this
case, Bo� is the fixed-point basis, and we have

R̃o = 
 1

rj
�K4

, �55�

R̃� = 
 1

ri
�K3

. �56�

For the spin part in the C2S1 phase, one substitutes K1, K2

for K3, K4. The amplitudes of R̃� on different atoms need to

be calculated. Once again �m�
˜�k� are involved. However for

those atoms with neighbors along the ladder �on-leg Cu and
O atoms�, these coefficients are different because of phase
factors at k=2kF, which cause cancellations in some contri-
butions of neighboring atoms. Another possible factor may
cause differences between atoms in the elementary cell. Fol-
lowing Ref. 89, one may assume that below a characteristic
distance x	L�=�−1, umklapp terms are relevant and that
they open up a gap in the charge-symmetric channel. This
massive charge correlation affects the staggered part of the
magnetic susceptibility, and yields an expression similar to
Eq. �52� �with cosh instead of sinh�. For on-leg oxygens,
which sit between two Cu along the ladder, one recovers a
sinh instead of a cosh. This produces different amplitudes

R̃o/�
� �L� for Cu and for O on-leg atoms provided L��m4

−1.
We have made the calculation for the half-filled case, and the
result is that m4 is of the same order as m2. Thus for dopings
larger than 0.05, this effect should not play any role. Once
band-correlation functions are known, one may follow ex-
actly the same procedure as in the uniform case in order to
obtain the temperature dependence of 1

T1
.

0 200 400 600 800 1000
0.0400600

0.0400605

0.900131

0.900132

0.900133

0.900134

K
ni

gh
ts

hi
ft

K

T [K]

Cu atom
O central

0 200 400 600 800 1000 1200
0.000

0.025

0.050

0.15

0.20

0.25

0.30

0.35

K
ni

gh
ts

hi
ft

K

T [K]

Cu atom
central O atom
on leg O atom
outer O atom

(a)

(a)

FIG. 11. �Color online� Temperature dependence of the Knight
shifts for the different atoms in the elementary cell �a� in the C2S2
phase and �b� in the C2S1 phase.

CHUDZINSKI, GABAY, AND GIAMARCHI PHYSICAL REVIEW B 78, 075124 �2008�

075124-16



3. Total relaxation rate

The plots in Fig. 12 show 1 /T1 for different atoms in the
elementary cell. They were obtained by numerical integra-
tion of Eq. �52� and adding the result to that computed for
the uniform part.

As for the Knight shifts, the difference between atoms are

caused mainly by the different �m�
˜ coefficients. However

these coefficients can be different for the staggered part and
for the uniform part.

The first observation is the linear dependence of 1
T1

at high
temperatures for all atoms, for all dopings. The Knight shift
saturates in this temperature range to a constant value, and

this is in accordance with the Korringa law. For the C2S2
phase we observe the linear dependence as expected for a
massless LL with all K parameters close to 1.

The second main conclusion is that processes involving
large k� transfers can strongly affect the measured rates, es-
pecially for temperatures comparable with the spin gaps, as
previously reported.90 One observes only small differences
between atoms in the elementary cell at low T. The differ-
ence between the relaxation rate of a Cu nucleus and that of
a central O nucleus comes from the fact that the latter may
relax only through processes in the “�” band, while for the
former, both bands contribute. The difference between on-leg
atoms and atoms sitting at other locations comes from the
fact that the staggered part contribution of the former nucleus
is very small, as it is suppressed by the opposite contribu-
tions of the two neighboring Cu atoms. The low-T activation
behavior �in the C2S1 and C1S0 phases� is then clearly seen
on these on-leg O sites.

Two points should be kept in mind when comparing our
results with experiments. First our �0 is on the order of 0.5
eV, so that the largest charge-antisymmetric gap is on the
order of 700 K. Observing it would be experimentally chal-
lenging, and it would be even harder to reach the Korringa
regime predicted at higher T. Second, our calculations were
made in the phase where SCd fluctuations dominate. Thus
experiments done at large pressures would be the most rel-
evant to compare our findings with. Aside from the above
caveats, the results of our calculations seem to be in very
reasonable agreement with experiments.10,11

VII. CONCLUSIONS

Our study has clearly shown that including oxygen atoms
in the structure produces significant changes in the ground-
state phase diagram of doped Cu-O two-leg Hubbard ladders.
This result is fully consistent with DMRG studies suggesting
that there are quantitative differences between models which
include O atoms and models which do not, even close to half
filling. The massless C2S2 phase is of special importance in
that respect. A Varma-type phase with incommensurate or-
bital current patterns and an additional density wave charac-
terize the ground-state structure at intermediate and large
dopings. The signatures of these states can be seen in NMR
experiments probing the various nuclei in the cell.

We see important differences between Cu and Cu-O lad-
ders in the weak-interaction limit �U	��. However numeri-
cal approaches which can investigate the opposite limit as
well suggest that these differences do survive for U��. This
invites further analytical studies of the two-leg Cu-O Hub-
bard ladders in the large U limit.
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FIG. 12. �Color online� Temperature dependence of the relax-
ation rates for the different atoms in the elementary cell �a� in the
C1S0 phase, �b� in the C2S2 phase, and �c� in the C2S1 phase.
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APPENDIX A: COUPLING CONSTANTS

The initial conditions for the nonlinear terms are

g1c
o = 4f�1,2,1,2,1� ,

g1a
o = 4f�1,2,2,1,1� ,

g2c
o = 4f�1,2,1,2,− 1� ,

g�c
o = 4�f�1,2,1,2,1� − f�1,2,1,2,− 1�� ,

g1
o =

2f�1,1,1,1,1�
VFo

+
2f�2,2,2,2,1�

VF�

,

g2
o =

2f�1,1,1,1,1�
VFo

−
2f�2,2,2,2,1�

VF�

,

g4a
o = 4f�1,2,2,1,− 1� , �A1�

where the function f�k , l ,m ,n , p� converts the interactions
given in the atomic basis �UCu,UO,VCu-O� into band g-ology
interactions:

f�k,l,m,n,p� = �
i,j

�ik
� �il

�� jm� jn�Vintra + Vinter cos�kFm − pkFn�� .

�A2�

The summation is taken over all the atoms in the elementary
cell. Vintra denotes interactions within the elementary cell,
and Vinter is VCu-O, since one of the atoms is outside the
elementary cell, as in Ref. 49. Initial values for K and
cot��� , cot��� are evaluated as follows: Starting from Eq.

�12�, one performs a S�� /4� rotation. In this B+− basis, K̂ can
be calculated by simply solving a matrix equation. The initial
K� are given by the eigenvalues of this matrix, and
cot��� , cot��� are the ratios of nondiagonal terms to the
difference of diagonal ones. For example, cot���
=2Bs+,s− / �Ks−−Ks+�.

The system of RG differential equations is solved by
means of an iterative method. If cot��� �or cot���� becomes
very large during the flow, we stop the flow at some point,
introduce the tangent of the angles instead of the cotangent,
and then resume the iteration scheme. In this way, we are
able to isolate divergences of the prefactors in some of the
cosine terms, which cause gaps to open and affect observ-
ables.

APPENDIX B: DERIVATION OF THE RG EQUATIONS

1. Flow of the diagonal basis

To second order in perturbation, one finds the corrections
dK1, dK2, dK3, and dK4 to the LL parameters and the non-
diagonal terms dB12 and dB34. These nondiagonal terms sig-
nal that after the RG step, Bo is no longer a diagonal basis.
We then go back to the B+− basis, using the transformation
S−1. In this basis, off-diagonal terms have been incremented
by small amounts during the RG step. For instance,

dBs−s+ = −
1

2
�dK1 − dK2�cos 2� + dB12sin 2� . �B1�

Diagonal terms also undergo infinitesimal variations,

dKs−�s+� =
1

2
�dK1 + dK2� 


1

2
�2dB12 cos 2�

+ �dK1 − dK2�sin 2�� . �B2�

Similar expressions hold for the charge modes when we per-
form the substitutions s→c, 1→3, 2→4, and �→� in the
equations above.

The new matrix is diagonalized by the operator S��
+d� ,�+d��, where the angle d�, which accounts for the
dB�−�+ and dK�−��+� variations ��=c ,s�, indicate a rotation
of Bo. This idea is summarized in the diagram shown in
Fig. 3.

We now determine the renormalization flow of the angles
� and �. In the spin sector, the diagonalization condition is
written in terms of Ks−�s+� and Bs−s+,

1

2
�Ks− − Ks+�cos 2� + Bs−s+ sin 2� = 0. �B3�

One differentiates the above equation in order to relate d�,
Ks−�s+�, and Bs−s+:

−
d2�

sin2 2�

=
2

Ks− − Ks+

1

2
�dKs− − dKs+�cos 2� − dBs−s+ sin 2�

�sin2 2� − cos2 2��sin 2�
.

�B4�

In the diagonal basis this equation reads

d cot 2� = −
1

K1 − K2
��dK1 − dK2�

2 sin 2� cos 2�

sin2 2� − cos2 2�

− dB12
− sin2 2� + cos2 2�

sin2 2� − cos2 2�
� , �B5�

where the differentials of the LL parameters are known in the
diagonal basis. They were obtained to second order in per-
turbation, and the dK�, which we use here, were given in
Sec. III A. In the charge sector, we obtain the equivalent set
of equations with the changes s→c, 1→3, 2→4, and
�→�. The additional expressions for the differentials of off-
diagonal terms are obtained in a similar way, giving for the
case of a generic filling,

dB12 = P1Q1��g1a
2 + g�c

2 + Gt
2� − K1K2�g1a

2 + g1c
2 + g2c

2 + Gp
2��

− K1K2h�P1�g1g2,

dB34 = P2Q2�g1c
2 + g2c

2 + g�c
2 � , �B6�

where h�P1�= ��P1Q1�2+0.25�P1
2−Q1

2��−1.

CHUDZINSKI, GABAY, AND GIAMARCHI PHYSICAL REVIEW B 78, 075124 �2008�

075124-18



2. First-order correction to g1 and g2

Setting g1=g1d+g1d� and g2=g1d−g1d�, the Hamiltonian
reads

H = HLL + g1� dr cos�2�s−�cos�2�s+�

+ g2� dr sin�2�s−�sin�2�s+� . �B7�

In order to simplify the RG calculation, we first solve this
problem in the total/transverse basis, where the averages
over the high-energy terms are ��s−�r�2�h=Ks−dl, ��s+�r�2�h

=Ks+dl, and ��s−�r��s+�r��h= 1
2Adl. One may determine the

renormalization flow that is produced when integrating out
the high-energy components. For instance, the renormaliza-
tion of g1 gives

�g1� dr cos�2��s+ + h��s+��� cos�2��s− + h��s−����h

=
1

2
g1�� dr cos�2��s+ + �s−� + �h��s+� + h��s−����h

+ �� dr cos�2��s+ − �s−� + �h��s+� − h��s−����h. �B8�

We re-exponentiate the cosines, use Debye-Waller-type rela-
tions, and expand the exponential function in the Taylor se-
ries,

�cos�x + h�x���h = cos�x�� �
�=


exp�2ı�h�x���h

= cos�x�exp�− �h�x�2�h�

= �1 − �h�x�2�h�cos�x� , �B9�

where ��h��s+�
h��s−��2�h= �Ks++Ks−�dl
Adl. One then
finds the usual diagonal term

g1�1 − �Ks+ + Ks−�dl�� dr�cos�2��s+ + �s−��

+ cos�2��s+ − �s−��	

= 2g1�1 − �Ks+ + Ks−�dl�� dr cos�2�s+�cos�2�s−� .

�B10�

After rescaling the integration variable dr, one gets the RG
equation for g1. However in the nondiagonal basis there is
also an additional term,

g1Adl� dr�cos�2��s+ + �s−�� − cos�2��s+ − �s−���

= − 2g1Adl� dr sin�2�s−�sin�2�s+� . �B11�

This links the change in g2 to the coupling constant g1. The
derivation of the RG equation for the g2 term is obtained in a
similar fashion, using the identity

sin�2�s+�sin�2�s−� =
1

2
�cos��s+ − �s−� − cos��s+ + �s−�� .

�B12�

Finally, the first-order RG equation for g1 is

dg1�2�

dl
= g1�2��2 − �Ks+ + Ks−�� + g2�1�A . �B13�

In the diagonal basis, using

Ks−�2� → P2K1�2� + 2PQA12 + Q2K2�1�,

A → PQ�K1 − K2� + A12�P2 − Q2� , �B14�

the RG equations for the couplings are

dg1�2�

dl
= g1�2��K2 + K1� + g2�1���P2 − Q2�A12 + PQ�K1 − K2�� .

�B15�

3. RG equations for the half-filled case

Using the same method as for the incommensurate case,
we find the following system of equations:

dK1

dl
=

1

2
�P1

2�g1a
2 + J0���g3a

2 + g�c
2 + Gt

2�

− K1
2�Q1

2g1a
2 + J0���Q1

2g3l
2 + Q1

2g1c
2 + P1

2Gp
2 + P1

2g2c
2

+ J0���P1
2g3b

2 +
1

2
�g1

2 + g2
2� + f�P1��g1g2��� ,

dK2

dl
=

1

2
�Q1

2�g1a
2 + J0���g3a

2 + g�c
2 + Gt

2�

− K2
2�P1

2g1a
2 + P1

2g1c
2 + J0���P1

2g3�
2 + Q1

2Gp
2

+ J0���Q1
2g3b

2 + Q1
2g2c

2 +
1

2
�g1

2 + g2
2� − f�P1��g1g2��� ,

dK3

dl
=

1

2
P2

2�g1c
2 + g2c

2 + g�c
2 + g3c

2 � +
1

2
Q2

2�g3�
2 + g3a

2 + g3b
2

+ g3c
2 �J0��� ,

dK4

dl
=

1

2
Q2

2�g1c
2 + g2c

2 + g�c
2 + g3c

2 � +
1

2
P2

2�g3�
2 + g3a

2 + g3b
2

+ g3c
2 �J0��� ,

dg1c

dl
= g1c�2 − �P1

2K2 + P2
2K3

−1 + Q1
2K1 + Q2

2K4
−1��

− �g1g2c + g1ag�c + J0���g3cg3�� ,
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dg1a

dl
= g1a�2 − �P1

2�K2 + K1
−1� + Q1

2�K1 + K2
−1��	

− �g1cg�c + J0���g3ag3�� ,

dg2c

dl
= g2c�2 − P2�P2

2K3
−1 + P1

2K1 + Q2
2K4

−1 + Q1
2K2��

− �g1cg1 + J0���g3cg3a� ,

dg1

dl
= g1�2 − �K2 + K1�� + P1Q1�K2 − K1�g2

− ��g1cg2c + J0���g3bg3�� ,

dg2

dl
= g2�2 − �K2 + K1�� + P1Q1�K2 − K1�g1,

dg�c

dl
= g�c�2 − �P1

2K1
−1 + Q1

2K2
−1 + P2

2K3
−1 + Q2

2K4
−1��

− �g1ag1c + J0���g3ag3c� ,

dg4a

dl
= g4a�2 −

1

2
�P1

2�K1 + K1
−1� + Q1

2�K2 + K2
−1��� ,

dGp

dl
= Gp�1 − �P1

2K1 + Q1
2K2�� + g4a

2 �P1
2�K1 − K1

−1�

+ Q1
2�K2 − K2

−1�� ,

dGt

dl
= Gt�1 − �P1

2K1
−1 + Q1

2K2
−1�� + g4a

2 �P1
2�− K1 + K1

−1�

+ Q1
2�− K2 + K2

−1�� ,

dg3�

dl
= g3��2 − �P1

2K2 + P2
2K4 + Q1

2K1 + Q2
2K3��

− �g1g3b + g1cg3c + g1ag3a� ,

dg3a

dl
= g3a�2 − �P1

2K1
−1 + P2

2K4 + Q1
2K2

−1 + Q2
2K3��

− �g�cg3c + g1ag3�� ,

dg3b

dl
= g3b�2 − �P1

2K1 + P2
2K4 + Q1

2K2 + Q2
2K3��

− �g1g3� + g2cg3c� ,

dg3c

dl
= g3c�2 − �P2

2�K4 + K3
−1� + Q2

2�K3 + K4
−1��	 − �g�cg3a

+ g2cg3b + g1cg3�� , �B16�

where

f�P1� = 
P1Q1 +
1

4

P1
2 − Q1

2

P1Q1
�−1

. �B17�

The renormalization of the parameter � is controlled by
the same equation as before. The additional flows for the
velocities of the modes, due to umklapp scattering, are all
proportional to a Bessel term J2�4�� and hence are neglected.
The general formula describing the flow of the diagonal basis
remains the same as for the incommensurate case. However
one needs to substitute modified expressions of the dK�.

APPENDIX C: ORDER PARAMETER OPERATORS
IN BOSONIZATION LANGUAGE

We first write the order parameters in fermionic language.
We consider only those order parameters which can produce
power-law decays of correlations for the various locked
phase fields combinations. These operators are first defined
for each site then expressed in the o /� basis, where the �m�

coefficients enter their expressions.
There are two kinds of order parameter operators. The

first group represents charge-density �particle-hole� fluctua-
tions with a 2kF wave vector. They correspond to the usual
CDW, which is the sum of CDW in each band. Up to an
unimportant constant factor it gives

OCDW � �
�

�
���

�−��
† �����+���. �C1�

The subscript � denotes the band, so to obtain the order
parameter inside one specific band, it is enough to take the
first or the second term in the above sum. It is also possible
to define an operator which describes the difference of the
densities on the two legs,

O�CDW � �
�

�
���

�−�̄�
† �����+���, �C2�

or the operator which describes an orbital antiferromagnetic
�OAF� fluctuation where currents flow along the legs and the
rungs of the ladder,

OOAF � �
�

�
���

��−�̄�
† �����+���, �C3�

We can also define �at half filling� “bond” operators,
which represent density waves located on the bonds, either in
phase,

OBDW � �
�

�
���

exp�ikF�x��−��
† �����+���, �C4�

out of phase between the two legs of the ladder,

O�BDW � �
�

�
���

exp�ikF�x��−�̄�
† �����+���, �C5�

or in the diagonal direction,

OFDW � �
�

�
���

exp�ikF�x���−�̄�
† �����+���. �C6�

Away from half filling, on-site and bond operators are degen-
erate because of translational invariance �the charge-
symmetric mode is massless�.

The second group describes superconducting pairing
�particle-particle� fluctuations with zero wave vectors. As
usual there is the s-wave pairing
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OSCs � �
�

�
���

��−�̄�̄�����+���, �C7�

and the d-wave pairing, which corresponds to a change of the
sign of the order parameter when moving from along the legs
to along the rungs,

OSCd � �
�

�
���

���−��̄�����+���. �C8�

These phases are given different names in the literature. The
name orbital antiferromagnet was used traditionally for the
operator defined above, but it is also called staggered flux24

�SF� or d-density-wave68 �DDW� phase. Its bond counterpart
is sometimes called f-density-wave24 �FDW� or diagonal
current68 �DC� phase. Similarly, our �CDW and �BDW or-
ders are also denoted24 CDW and �-density wave �PDW� or
CDW and SP in Ref. 68. We have decided to use the notation
�CDW to avoid any confusion with the usual CDW, which
also appears in our calculation.

We can now represent the operators in terms of boson
fields, using mapping equation �8�. It is important to keep the
same convention for the signs of the Klein factors as that we
used to write the Hamiltonian in bosonic form. Choosing �
= +1, we get ��+��−= + ı. This determines whether a sine or
a cosine appears in the formulas below. This choice was used
in Refs. 24 and 49 but the opposite one was used in Ref. 89.
One can easily relate the two by shifting the phase fields �
by an amount � /2.

The operators take the form

O�CDW � cos �c+ sin �c− cos �s+ cos �s−

− sin �c+ cos �c− sin �s+ sin �s−,

OOAF � cos �c+ cos �c− cos �s+ cos �s−

+ sin �c+ sin �c− sin �s+ sin �s−,

O�BDW � cos �c+ cos �c− sin �s+ sin �s−

+ sin �c+ sin �c− cos �s+ cos �s−,

OFDW � cos �c+ sin �c− sin �s+ sin �s−

− sin �c+ cos �c− cos �s+ cos �s−,

OSCs � exp ı�c+ cos �c− sin �s+ sin �s−

− ı exp ı�c+sin �c− cos �s+ cos �s−,

OSCd � exp ı�c+ cos �c− cos �s+ cos �s−

− ı exp ı�c+ sin �c− sin �s+ sin �s−. �C9�

It is also useful to consider these operators in the Bo�

basis. For example, the SDW operator in the o-band SDW�o�
and the CDW operator in the �-band CDW��� are

OSDW�o� � exp ı��c+ + �c−�sin��s+ + �s−� ,

OCDW��� � exp ı��c+ − �c−�cos��s+ − �s−� . �C10�

To determine the phases, we need to obtain the exponents
that characterize the spatial decay of the operators’ correla-
tions. Using a standard procedure to compute the correlations
with the quadratic Hamiltonian,8 we find

�CDW = K2 + K1 + K4 + K3,

�OAF = P1
�2K2 + Q1

�2K1 + P1
�2K1

−1 + Q1
�2K2

−1 + P2
�2K4 + Q2

�2K3

+ P2
�2K3

−1 + Q2
�2K4

−1,

�SCd = K2 + K1 + K4
−1 + K3

−1. �C11�

The exponents of the OAF and �CDW fluctuations are the
same, so we need to evaluate logarithmic corrections to the
power-law decay to determine the dominant ordering.

APPENDIX D: SIMPLIFIED SYSTEM OF RG EQUATIONS

When cot 2�→0 and cot 2�→�, one gets the following
system of first-order RG equations for the couplings:

dg1c

dl
= g1c�2 − 
K2 +

1

2
K3

−1 +
1

2
K4

−1�� ,

dg1a

dl
= g1a�2 − �K2 + K1

−1�� ,

dg2c

dl
= g2c�2 − 
1

2
K3

−1 + K1 +
1

2
K4

−1�� ,

dg1

dl
= g1�2 − �K2 + K1�� ,

dg2

dl
= g2�2 − �K2 + K1�� ,

dg�c

dl
= g�c�2 − 
K1

−1 +
1

2
K3

−1 +
1

2
K4

−1�� . �D1�

The zeroth-order approximation to the above system is ob-
tained using the fact that K4 �K2� is much smaller �larger�
than one.

For the C2S1 phase, the relevance of the important cou-
pling needs to be checked. This gives us only one differential
equation in this case �assuming that close to the fixed point,
�g1�= �g2�=g�,

dg

dl
= g�2 − �K2 + K1�� + P1Q1�K2 − K1�g . �D2�

Taking into account the fact that P1Q1	0, that it keeps de-
creasing during the flow, and that the initial K2 makes g
irrelevant, one finds that a significant decrease in K2 would
be required in order to make g relevant.
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